Back to Search Start Over

Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0.

Authors :
Castino, Federica
Yin, Feijia
Grewe, Volker
Yamashita, Hiroshi
Matthes, Sigrun
Dietmüller, Simone
Baumann, Sabine
Soler, Manuel
Simorgh, Abolfazl
Mendiguchia Meuser, Maximilian
Linke, Florian
Lührs, Benjamin
Source :
Geoscientific Model Development. 2024, Vol. 17 Issue 9, p4031-4052. 22p.
Publication Year :
2024

Abstract

The optimization of aircraft trajectories involves balancing operating costs and climate impact, which are often conflicting objectives. To achieve compromised optimal solutions, higher-level information such as preferences of decision-makers must be taken into account. This paper introduces the SolFinder 1.0 module, a decision-making tool designed to identify eco-efficient aircraft trajectories, which allow for the reduction of the flight's climate impact with limited cost penalties compared to cost-optimal solutions. SolFinder 1.0 offers flexible decision-making options that allow users to select trade-offs between different objective functions, including fuel use, flight time, NOx emissions, contrail distance, and climate impact. The module is included in the AirTraf 3.0 submodel, which optimizes trajectories under atmospheric conditions simulated by the ECHAM/MESSy Atmospheric Chemistry model. This paper focuses on the ability of the module to identify eco-efficient trajectories while solving a bi-objective optimization problem that minimizes climate impact and operating costs. SolFinder 1.0 enables users to explore trajectory properties at varying locations of the Pareto fronts without prior knowledge of the problem results and to identify solutions that limit the cost of reducing the climate impact of a single flight. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1991959X
Volume :
17
Issue :
9
Database :
Academic Search Index
Journal :
Geoscientific Model Development
Publication Type :
Academic Journal
Accession number :
177486332
Full Text :
https://doi.org/10.5194/gmd-17-4031-2024