Back to Search Start Over

Concentration behavior and local uniqueness of normalized solutions for Kirchhoff type equation.

Authors :
Guo, Helin
Liu, Haolin
Zhao, Lingling
Source :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP). Jun2024, Vol. 75 Issue 3, p1-19. 19p.
Publication Year :
2024

Abstract

Let a > 0 , b > 0 and V (x) ≥ 0 be a coercive function in R 2 . We study the solutions with normalized L 2 -norm for the following Kirchhoff type equation - a + b ∫ R 2 | ∇ u | 2 d x Δ u + V (x) u = β | u | 2 u + λ u on a suitable weighted Sobolev space H = u ∈ H 1 (R 2) : ∫ R 2 V (x) u 2 d x < ∞. Our aim is to investigate the limit behaviors of the solutions with normalized L 2 -norm for this equation as (a , b) → (0 , 0) . Moreover, the uniqueness of the solution with normalized L 2 -norm for this equation is also discussed for a, b close to 0 [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*SOBOLEV spaces
*EQUATIONS

Details

Language :
English
ISSN :
00442275
Volume :
75
Issue :
3
Database :
Academic Search Index
Journal :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
Publication Type :
Academic Journal
Accession number :
177462870
Full Text :
https://doi.org/10.1007/s00033-024-02231-w