Back to Search
Start Over
Concentration behavior and local uniqueness of normalized solutions for Kirchhoff type equation.
- Source :
-
Zeitschrift für Angewandte Mathematik und Physik (ZAMP) . Jun2024, Vol. 75 Issue 3, p1-19. 19p. - Publication Year :
- 2024
-
Abstract
- Let a > 0 , b > 0 and V (x) ≥ 0 be a coercive function in R 2 . We study the solutions with normalized L 2 -norm for the following Kirchhoff type equation - a + b ∫ R 2 | ∇ u | 2 d x Δ u + V (x) u = β | u | 2 u + λ u on a suitable weighted Sobolev space H = u ∈ H 1 (R 2) : ∫ R 2 V (x) u 2 d x < ∞. Our aim is to investigate the limit behaviors of the solutions with normalized L 2 -norm for this equation as (a , b) → (0 , 0) . Moreover, the uniqueness of the solution with normalized L 2 -norm for this equation is also discussed for a, b close to 0 [ABSTRACT FROM AUTHOR]
- Subjects :
- *SOBOLEV spaces
*EQUATIONS
Subjects
Details
- Language :
- English
- ISSN :
- 00442275
- Volume :
- 75
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
- Publication Type :
- Academic Journal
- Accession number :
- 177462870
- Full Text :
- https://doi.org/10.1007/s00033-024-02231-w