Back to Search Start Over

Molecular mechanisms of Tetrastigma hemsleyanum Diels&Gilg against lung squamous cell carcinoma: From computational biology and experimental validation.

Authors :
Li, Ping
Wang, Changchang
Chen, Gun
Han, Yixiao
Lu, Hanyu
Li, Nan
Lv, Yangbin
Chu, Chu
Peng, Xin
Source :
Journal of Ethnopharmacology. Sep2024, Vol. 331, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Tetrastigma hemsleyanum ( T. hemsleyanum ), valued in traditional medicine for its potential to boost immunity and combat tumors, contains uncharacterized active compounds and mechanisms. This represents a significant gap in our understanding of its ethnopharmacological relevance. To involve the mechanism of anti-lung cancer effect of T. hemsleyanum by means of experiment and bioinformatics analysis. The anticancer mechanism of T. hemsleyanum against lung squamous carcinoma (LUSC) in zebrafish was investigated. The LUSC model was established by injecting NCI–H2170 cells in the zebrafish and evaluating its anti-tumor efficacy. Next, component targets and key genes were obtained by molecular complex detection (MCODE) analysis and protein-protein interaction (PPI) network analysis. Component analysis of T. hemsleyanum was performed by UPLC-Q-TOF-MS. Molecular docking was used to simulate the binding activities of key potential active components to core targets were simulated using. Prognostic and pan-cancer analyses were then performed to validate the signaling pathways involved in the prognostic genes using gene set enrichment analysis (GSEA). Subsequently, Molecular dynamics simulations were then performed for key active components and core targets. Finally, cellular experiments were used to verify the expression of glutamate metabotropic receptor 3 (GRM3) and glutamate metabotropic receptor 7 (GRM7) in the anticancer effect exerted of T. hemsleyanum. We experimentally confirmed the inhibitory effect of T. hemsleyanum on LUSC by transplantation of NCI–H2170 cells into zebrafish. There are 20 main compounds in T. hemsleyanum , such as procyanidin B1, catechin, quercetin, and kaempferol, etc. A total of 186 component targets of T. hemsleyanum and sixteen hub genes were screened by PPI network and MCODE analyses. Molecular docking and molecular dynamics simulation results showed that Gingerglycolipid B and Rutin had higher affinity with GRM3 and GRM7 , respectively. Prognostic analysis, Pan-cancer analysis and verification experiment also confirmed that GRM3 and GRM7 were targets for T. hemsleyanum to exert anti-tumor effects and to participate in immune and mutation processes. In vitro experiments suggested that the inhibitory effect of T. hemsleyanum on cancer cells was correlated with GRM3 and GRM7. In vivo, in vitro and in silico results confirmed the potential anticancer effects against LUSC of T. hemsleyanum , which further consolidated the claim of its traditional uses. [Display omitted] • A total of 20 compounds and 16 hub genes linked to T. hemsleyanum 's LUSC inhibition were identified. • Molecular studies reveal Gingerglycolipid B and Rutin have high affinity for GRM3 and GRM7. • GRM3 and GRM7 were potential T. hemsleyanum targets for antitumor activity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03788741
Volume :
331
Database :
Academic Search Index
Journal :
Journal of Ethnopharmacology
Publication Type :
Academic Journal
Accession number :
177457898
Full Text :
https://doi.org/10.1016/j.jep.2024.118326