Back to Search Start Over

Data-based modelling of arrays of wave energy systems: Experimental tests, models, and validation.

Authors :
Pasta, Edoardo
Papini, Guglielmo
Peña-Sanchez, Yerai
Mosquera, Facundo D.
Ferri, Francesco
Faedo, Nicolás
Source :
Control Engineering Practice. Jul2024, Vol. 148, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

One of the key steps towards economic feasibility of wave energy conversion technology concerns scaling up to farms of multiple devices, in the attempt to reduce installation costs by sharing infrastructure, and a consequent drop in levelised cost of energy. Moreover, whenever wave energy systems are deployed in proximity (in so-called arrays), the exploitation of the hydrodynamic interactions between single devices is fully enabled, potentially increasing the final energy outcome. To achieve this in real (operational) time, the employed energy-maximising control strategies require control-oriented array models, able to efficiently describe the dynamics of these interconnected systems in a representative fashion. This can be, nonetheless, a difficult task when considering first principles alone, under small motion assumptions, for modelling purposes. Recognising the uncertainty associated to array numerical models obtained from the linearisation of simplified system equations around their equilibria, this paper presents models of several array configurations identified following a frequency domain approach on the basis of experimental data. Tailored tests on laboratory-scale devices have been designed and conducted in the Aalborg University (Denmark) wave tank facility, with the purpose of performing representative system identification of the wave energy systems arrays. The obtained models are validated on different representative sea states configurations, in controlled and uncontrolled motion operational conditions. The validation results are fully discussed and analysed in terms of standard error measures and time lag, while the obtained models are made freely accessible via a linked repository (named OCEAN), in the attempt to openly provide validated models for different array configurations. • Data-based modelling of wave energy system arrays from experimental data. • Different array layouts, up to three devices at different distances. • Validation made in uncontrolled and controlled (passive and reactive) conditions. • Freely available validated MIMO models of the different array configurations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09670661
Volume :
148
Database :
Academic Search Index
Journal :
Control Engineering Practice
Publication Type :
Academic Journal
Accession number :
177421351
Full Text :
https://doi.org/10.1016/j.conengprac.2024.105949