Back to Search Start Over

Exploring the effect of a pendent amine group poised over the secondary coordination sphere of a cobalt complex on the electrocatalytic hydrogen evolution reaction.

Authors :
Ali, Afsar
Verma, Rajaneesh Kumar
Das, Avijit
Paria, Sayantan
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry. 5/21/2024, Vol. 53 Issue 19, p8289-8297. 9p.
Publication Year :
2024

Abstract

A CoIII complex (2) of a bispyridine-dioxime ligand (H2LNMe2) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the CoII complex (2a). The acid–base properties of 2 showed pKa values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of 2 was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an Ecat/2 of −1.01 V vs. the SHE, with an overpotential of 673 mV and a kobs value of 2.6 × 103 s−1 at pH 7. For comparison, the HER of the Co complex (1) lacking the tert-amine group at the secondary sphere was investigated in PBS, which showed a kobs of 1.3 × 103 s−1 and an overpotential of 577 mV. At pH 4, however, 2 revealed a ∼3 times higher kobs value than 1, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for 1, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The kobs values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)2(pyridine)(Cl)] complex, implying that the primary coordination sphere around 1 or 2 enhances the HER and offers better catalyst stability in acidic buffer solutions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
53
Issue :
19
Database :
Academic Search Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
177400774
Full Text :
https://doi.org/10.1039/d4dt00009a