Back to Search Start Over

Electronic Structure Engineering in NiFe Sulfide via A Third Metal Doping as Efficient Bifunctional OER/ORR Electrocatalyst for Rechargeable Zinc‐Air Battery.

Authors :
Sari, Fitri Nur Indah
Lai, Yi‐Cheng
Huang, Yan‐Jia
Wei, Xuan‐Yu
Pourzolfaghar, Hamed
Chang, Yu‐Hao
Ghufron, Muhammad
Li, Yuan‐Yao
Su, Yen‐Hsun
Clemens, Oliver
Ting, Jyh‐Ming
Source :
Advanced Functional Materials. 5/22/2024, Vol. 34 Issue 21, p1-11. 11p.
Publication Year :
2024

Abstract

Ti, V, Cr, Mn, Co, and Cu, have been investigated as a third dopant in NiFe sulfide for enhanced oxygen evolution reaction (OER)/oxygen reduction reaction (ORR). The effects of dopant on surface electronic structure, conductivity, and thermodynamic barrier of reaction are addressed and discussed. For the OER, X‐ray photoelectron spectroscopy analysis shows that electron transferring from the Ni to the dopants enhances the catalytic performance of the sulfide. Cu doped NiFe sulfide exhibits the best OER performance. For the ORR, density functional theory calculation indicates that Ti, V, Mn, Co, and Cu upshift the d‐band center (ɛd), while Cr downshifts the ɛd. Among the dopants, V leads to optimized electronic structure modification, giving optimized adsorption energy of *O on the Ni, the lowest rate determining step ΔG1, and the best ORR activity. By considering E10‐E1/2 together with the maximum current density of the OER and limited diffusion current density of the ORR, NiFeVS exhibits the best OER/ORR bifunctionality. The performance of NiFeVS as a cathodic catalyst has also been evaluated in a zinc air battery, demonstrating a specific capacity of 698 mAh g−1, maximum power density of 190 mW cm−2, and a superior cycle stability of 2400 cycles (400 h). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
21
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
177398310
Full Text :
https://doi.org/10.1002/adfm.202310181