Back to Search Start Over

Partitioning the contribution of bees with different traits and hoverflies to flower-visitor interaction networks.

Authors :
Martínez-Núñez, Carlos
Sakai, Shoko
Source :
Ecological Indicators. Jun2024, Vol. 163, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

[Display omitted] • The contribution of bees and syrphids to interaction network attributes is unclear. • We simulate the removal of bees with different traits and syrphids. • Bees have a key role increasing nestedness, interaction diversity, and stability. • Syrphids increase network specialization but have an overall secondary role. • Smaller bees and bees active for longer contribute more to temporal stability. Insect pollinators are key to maintaining biodiversity and providing important ecosystem services. Among them, bee species (i.e., Apidae) and hoverflies (i.e., Syrphidae) are two of the most important and well-studied taxa worldwide. Yet, their relative contribution to the structural and dynamic properties of plant-pollinator interaction networks remains poorly understood. This is an important gap in knowledge given that these phylogenetically and functionally different groups might play different roles within their communities and respond in contrasting ways to anthropogenic perturbations. Here, we study the relative contribution of bee species (with different traits) and syrphids to maintain network properties (i.e., nestedness, network specialization (H2), and interaction diversity) and their influence on the temporal dynamics of these network metrics. To this end, we simulate species removals in community-wide flower-arthropod visitor interaction networks. These interactions were extensively sampled across four years in two different near-pristine temperate ecosystems in Japan. We found that bee species contribute significantly more than syrphids or any random combination of species to network nestedness, low specialization, and interaction diversity across months and years. In addition, bees also played a particularly important role in maintaining the observed temporal dynamics over time. Conversely, although syrphids were an abundant and species-rich group, they did not contribute so prominently to network metrics or temporal dynamics, with the exception of network complementary specialization, to which they contributed positively. In addition, smaller bee species and those that were active for longer periods were particularly important for interaction diversity and the number of interactions, respectively, and to maintain observed network temporal dynamics. Our results support that bee species, and especially the small ones, are cornerstone contributors to plant-visitor communities by shaping network properties and network temporal dynamics in natural ecosystems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1470160X
Volume :
163
Database :
Academic Search Index
Journal :
Ecological Indicators
Publication Type :
Academic Journal
Accession number :
177390822
Full Text :
https://doi.org/10.1016/j.ecolind.2024.112041