Back to Search Start Over

Metabolic models predict fotemustine and the combination of eflornithine/rifamycin and adapalene/cannabidiol for the treatment of gliomas.

Authors :
Kishk, Ali
Pacheco, Maria Pires
Heurtaux, Tony
Sauter, Thomas
Source :
Briefings in Bioinformatics. May2024, Vol. 25 Issue 3, p1-15. 15p.
Publication Year :
2024

Abstract

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype–specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14675463
Volume :
25
Issue :
3
Database :
Academic Search Index
Journal :
Briefings in Bioinformatics
Publication Type :
Academic Journal
Accession number :
177375824
Full Text :
https://doi.org/10.1093/bib/bbae199