Back to Search
Start Over
Interface-modulated kinetic differentials in electron and hole transfer rates as a key design principle for redox photocatalysis by Sb2VO5/QD heterostructures.
- Source :
-
Journal of Chemical Physics . 5/21/2024, Vol. 160 Issue 19, p1-15. 15p. - Publication Year :
- 2024
-
Abstract
- The efficient conversion of solar energy to chemical energy represents a critical bottleneck to the energy transition. Photocatalytic splitting of water to generate solar fuels is a promising solution. Semiconductor quantum dots (QDs) are prime candidates for light-harvesting components of photocatalytic heterostructures, given their size-dependent photophysical properties and band-edge energies. A promising series of heterostructured photocatalysts interface QDs with transition-metal oxides which embed midgap electronic states derived from the stereochemically active electron lone pairs of p-block cations. Here, we examine the thermodynamic driving forces and dynamics of charge separation in Sb2VO5/CdSe QD heterostructures, wherein a high density of Sb 5s2-derived midgap states are prospective acceptors for photogenerated holes. Hard-x-ray valence band photoemission spectroscopy measurements of Sb2VO5/CdSe QD heterostructures were used to deduce thermodynamic driving forces for charge separation. Interfacial charge transfer dynamics in the heterostructures were examined as a function of the mode of interfacial connectivity, contrasting heterostructures with direct interfaces assembled by successive ion layer adsorption and reaction (SILAR) and interfaces comprising molecular bridges assembled by linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate ultrafast (<2 ps) electron and hole transfer in SILAR-derived heterostructures, whereas LAA-derived heterostructures show orders of magnitude differentials in the kinetics of hole (<100 ps) and electron (∼1 ns) transfer. The interface-modulated kinetic differentials in electron and hole transfer rates underpin the more effective charge separation, reduced charge recombination, and greater photocatalytic efficiency observed for the LAA-derived Sb2VO5/CdSe QD heterostructures. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 160
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 177375111
- Full Text :
- https://doi.org/10.1063/5.0201550