Back to Search
Start Over
Neighborhood based computational approaches for the prediction of lncRNA-disease associations.
- Source :
-
BMC Bioinformatics . 5/13/2024, Vol. 25 Issue 1, p1-37. 37p. - Publication Year :
- 2024
-
Abstract
- Motivation: Long non-coding RNAs (lncRNAs) are a class of molecules involved in important biological processes. Extensive efforts have been provided to get deeper understanding of disease mechanisms at the lncRNA level, guiding towards the detection of biomarkers for disease diagnosis, treatment, prognosis and prevention. Unfortunately, due to costs and time complexity, the number of possible disease-related lncRNAs verified by traditional biological experiments is very limited. Computational approaches for the prediction of disease-lncRNA associations allow to identify the most promising candidates to be verified in laboratory, reducing costs and time consuming. Results: We propose novel approaches for the prediction of lncRNA-disease associations, all sharing the idea of exploring associations among lncRNAs, other intermediate molecules (e.g., miRNAs) and diseases, suitably represented by tripartite graphs. Indeed, while only a few lncRNA-disease associations are still known, plenty of interactions between lncRNAs and other molecules, as well as associations of the latters with diseases, are available. A first approach presented here, NGH, relies on neighborhood analysis performed on a tripartite graph, built upon lncRNAs, miRNAs and diseases. A second approach (CF) relies on collaborative filtering; a third approach (NGH-CF) is obtained boosting NGH by collaborative filtering. The proposed approaches have been validated on both synthetic and real data, and compared against other methods from the literature. It results that neighborhood analysis allows to outperform competitors, and when it is combined with collaborative filtering the prediction accuracy further improves, scoring a value of AUC equal to 0966. Availability: Source code and sample datasets are available at: https://github.com/marybonomo/LDAsPredictionApproaches.git [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14712105
- Volume :
- 25
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- BMC Bioinformatics
- Publication Type :
- Academic Journal
- Accession number :
- 177350342
- Full Text :
- https://doi.org/10.1186/s12859-024-05777-8