Back to Search Start Over

Regulating lattice tensile strain of Ru-Co bimetallic nanoparticles on carbonized wood for boosting its hydrogen evolution reaction.

Authors :
Li, Moyan
Huo, Huashuang
Chen, Wangqian
Hou, Hewei
Yu, Yuanyuan
Qian, Guangfu
Min, Douyong
Source :
Fuel. Jul2024, Vol. 368, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Ru 1 Co 10 /CW-2 exhibits good intrinsic activity and stability for the hydrogen evolution reaction (HER), which can be attributed to tunable lattice tensile strain and electronic interactions, while the porous carbonized wood facilitates rapid electron transfer, electrolyte transport and gas escape. [Display omitted] • Ru doping regulates the lattice tensile strain in Ru-Co bimetallic nanoparticles. • Porous structure favors electron transfer, electrolyte transport and gas escape. • Ru-Co bimetallic nanoparticles decorated on carbonized wood exhibits good HER. • The best alkaline HER overpotential was −42 mV at −10 mA/cm−2. The development of high-performance catalysts for hydrogen production originating from water electrolysis at the cathode is very crucial, but still a challenge. Here, trace Ru-doped Co bimetallic nanoparticles (named Ru x Co y /CW-z, x/y and z represent the molar ratio and total molar content of metals) were in situ decorated on carbonized wood by the vacuum impregnation and high-temperature annealing method. Ru 1 Co 10 /CW-2 demonstrates good hydrogen evolution reaction (HER) intrinsic activity with the overpotential of −42 mV (at −10 mA/cm−2) and Tafel slope of 75 mV dec−1 in a 1.0 M KOH, indicating its favorable HER reaction kinetics, and Ru 1 Co 10 /CW-2 exhibits good stability for 100 h (at −50 mA/cm−2). The good performances of Ru 1 Co 10 /CW-2 can be ascribed to the adjustable lattice tensile strain and electronic interactions, while the porous carbonized wood promotes electron transfer, electrolyte transport and gas escape. This work combines the advantages of lattice tensile strain with self-supported porous carbonized wood for HER in alkaline solution, which provides a valuable reference for synthesizing carbonized wood electrode materials with very low Ru content. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00162361
Volume :
368
Database :
Academic Search Index
Journal :
Fuel
Publication Type :
Academic Journal
Accession number :
177315717
Full Text :
https://doi.org/10.1016/j.fuel.2024.131644