Back to Search Start Over

Viscoelasticity of suspension of red blood cells under oscillatory shear flow.

Authors :
Takeishi, Naoki
Rosti, Marco Edoardo
Yokoyama, Naoto
Brandt, Luca
Source :
Physics of Fluids. Apr2024, Vol. 36 Issue 4, p1-21. 21p.
Publication Year :
2024

Abstract

We present a numerical analysis of the rheology of a suspension of red blood cells (RBCs) for different volume fractions in a wall-bounded, effectively inertialess, small amplitude oscillatory shear (SAOS) flow for a wide range of applied frequencies. The RBCs are modeled as biconcave capsules, whose membrane is an isotropic and hyperelastic material following the Skalak constitutive law. The frequency-dependent viscoelasticity in the bulk suspension is quantified by the complex viscosity, defined by the amplitude of the particle shear stress and the phase difference between the stress and shear. SAOS flow basically impedes the deformation of individual RBCs as well as the magnitude of fluid-membrane interactions, resulting in a lower specific viscosity and first and second normal stress differences than in steady shear flow. Although it is known that the RBC deformation alone is sufficient to give rise to shear-thinning, our results show that the complex viscosity weakly depends on the frequency-modulated deformations or orientations of individual RBCs but rather depends on combinations of the frequency-dependent amplitude and phase difference. The effect of the viscosity ratio between the cytoplasm and plasma and of the capillary number is also assessed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10706631
Volume :
36
Issue :
4
Database :
Academic Search Index
Journal :
Physics of Fluids
Publication Type :
Academic Journal
Accession number :
177184561
Full Text :
https://doi.org/10.1063/5.0196272