Back to Search Start Over

A Novel Architecture for an Intrusion Detection System Utilizing Cross-Check Filters for In-Vehicle Networks.

Authors :
Im, Hyungchul
Lee, Donghyeon
Lee, Seongsoo
Source :
Sensors (14248220). May2024, Vol. 24 Issue 9, p2807. 20p.
Publication Year :
2024

Abstract

The Controller Area Network (CAN), widely used for vehicular communication, is vulnerable to multiple types of cyber-threats. Attackers can inject malicious messages into the CAN bus through various channels, including wireless methods, entertainment systems, and on-board diagnostic ports. Therefore, it is crucial to develop a reliable intrusion detection system (IDS) capable of effectively distinguishing between legitimate and malicious CAN messages. In this paper, we propose a novel IDS architecture aimed at enhancing the cybersecurity of CAN bus systems in vehicles. Various machine learning (ML) models have been widely used to address similar problems; however, although existing ML-based IDS are computationally efficient, they suffer from suboptimal detection performance. To mitigate this shortcoming, our architecture incorporates specially designed rule-based filters that cross-check outputs from the traditional ML-based IDS. These filters scrutinize message ID and payload data to precisely capture the unique characteristics of three distinct types of cyberattacks: DoS attacks, spoofing attacks, and fuzzy attacks. Experimental evidence demonstrates that the proposed architecture leads to a significant improvement in detection performance across all utilized ML models. Specifically, all ML-based IDS achieved an accuracy exceeding 99% for every type of attack. This achievement highlights the robustness and effectiveness of our proposed solution in detecting potential threats. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
9
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
177183653
Full Text :
https://doi.org/10.3390/s24092807