Back to Search Start Over

Toward nitrogen recovery: Co-cultivation of microalgae and bacteria enhances the production of high-value nitrogen-rich cyanophycin.

Authors :
Liu, Hongyuan
Al-Dhabi, Naif Abdullah
Jiang, Huiling
Liu, Bingzhi
Qing, Taiping
Feng, Bo
Ma, Tengfei
Tang, Wangwang
Zhang, Peng
Source :
Water Research. Jun2024, Vol. 256, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• The symbiosis between algae and bacteria promotes the cyanophycin production. • Cyanophycin synthase encoding gene cphA was abundant and actively expressed. • 30 % MAGs in algal-bacterial microbiota can synthetize cyanophycin. • Ammonium and nitrate can be assimilated and synthesized cyanophycin. • The potential HGT event of cphA in wastewater microbiota was identified. The algal-bacterial wastewater treatment process has been proven to be highly efficient in removing nutrients and recovering nitrogen (N). However, the recovery of the valuable N-rich biopolymer, cyanophycin, remains limited. This research explored the synthesis mechanism and recovery potential of cyanophycin within two algal-bacterial symbiotic reactors. The findings reveal that the synergy between algae and bacteria enhances the removal of N and phosphorus. The crude contents of cyanophycin in the algal-bacterial consortia reached 115 and 124 mg/g of mixed liquor suspended solids (MLSS), respectively, showing an increase of 11.7 %–20.4 % (p < 0.001) compared with conventional activated sludge. Among the 170 metagenome-assembled genomes (MAGs) analyzed, 50 were capable of synthesizing cyanophycin, indicating that cyanophycin producers are common in algal-bacterial systems. The compositions of cyanophycin producers in the two algal-bacterial reactors were affected by different lighting initiation time. The study identified two intracellular synthesis pathways for cyanophycin. Approximately 36 MAGs can synthesize cyanophycin de novo using ammonium and glucose, while the remaining 14 MAGs require exogenous arginine for production. Notably, several MAGs with high abundance are capable of assimilating both nitrate and ammonium into cyanophycin, demonstrating a robust N utilization capability. This research also marks the first identification of potential horizontal gene transfer of the cyanophycin synthase encoding gene (cphA) within the wastewater microbial community. This suggests that the spread of cphA could expand the population of cyanophycin producers. The study offers new insights into recycling the high-value N-rich biopolymer cyanophycin, contributing to the advancement of wastewater resource utilization. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431354
Volume :
256
Database :
Academic Search Index
Journal :
Water Research
Publication Type :
Academic Journal
Accession number :
177109827
Full Text :
https://doi.org/10.1016/j.watres.2024.121624