Back to Search Start Over

Preparation of pH-sensitive carboxymethyl chitosan nanoparticles loaded with ginsenoside Rb1 and evaluation of drug release in vitro.

Authors :
An, Ziyuan
Dong, Yujia
Wang, Wanying
Wang, Jiani
Wu, Zhansheng
Wang, Wenfei
He, Yanhui
Bao, Guoqiang
Source :
International Journal of Biological Macromolecules. May2024:Part 2, Vol. 267, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Oral absorption of ginsenoside Rb1 (Rb1) is often hindered by the gastrointestinal tract. Carboxymethyl chitosan deoxycholic acid loaded with ginsenoside Rb1 nanoparticles (CMDA@Rb1-NPs), were prepared as a delivery system using a self-assembly technique with amphipathic deoxycholic acid grafted carboxymethyl chitosan as the carrier, which improved the stability and embedding rate of Rb1. In addition, the CMDA@Rb1-NPs was encapsulated with sodium alginate by ion crosslinking method with additional layer (CMDAlg@Rb1-NPs). Scanning electron microscopy showed that the nanoparticles were spherical, evenly distributed, smooth and without obvious adhesion. By evaluating drug loading, entrapment efficiency, the encapsulation efficiency of Rb1 increased from 60.07 % to 72.14 % after grafting deoxycholic acid improvement and optimization. In vitro release results showed that the cumulative release of Rb1 by CMDAlg-NPs showed a pH dependent effect, which was <10 % in simulated gastric juice with pH 1.2, completely released with pH 7.4 for about 48 h. In addition, Rb1 and CMDAlg@Rb1-NPs had inhibitory effects on A549 cells, and the inhibitory effect of CMDAlg@Rb1-NPs was better. Therefore, all results indicated that CMDA/Alg@Rb1 nanoparticles might be a novel drug delivery system to improve the stability and embedding rate of Rb1, and has the potential to be applied in oral pharmaceutical preparations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
267
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
177036441
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.131487