Back to Search Start Over

Hydrophobic substrate binding pocket remodeling of echinocandin B deacylase based on multi-dimensional rational design.

Authors :
Tang, Heng
Zhu, Han-yue
Huang, Yin-feng
Wu, Ze-yu
Zou, Shu-ping
Liu, Zhi-qiang
Zheng, Yu-guo
Source :
International Journal of Biological Macromolecules. May2024:Part 1, Vol. 267, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Actinoplanes utahensis deacylase (AAC)-catalyzed deacylation of echinocandin B (ECB) is a promising method for the synthesis of anidulafungin, the newest of the echinocandin antifungal agents. However, the low activity of AAC significantly limits its practical application. In this work, we have devised a multi-dimensional rational design strategy for AAC, conducting separate analyses on the substrate-binding pocket's volume, curvature, and length. Furthermore, we quantitatively analyzed substrate properties, particularly on hydrophilic and hydrophobic. Accordingly, we tailored the linoleic acid-binding pocket of AAC to accommodate the extended long lipid chain of ECB. By fine-tuning the key residues, the resulting AAC mutants can accommodate the ECB lipid chain with a lower curvature binding pocket. The D53A/I55F/G57M/F154L/Q661L mutant (MT) displayed 331 % higher catalytic efficiency than the wild-type (WT) enzyme. The MT product conversion was 94.6 %, reaching the highest reported level. Utilizing a multi-dimensional rational design for a customized mutation strategy of the substrate-binding pocket is an effective approach to enhance the catalytic efficiency of enzymes in handling complicated substrates. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
267
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
177033502
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.131473