Back to Search Start Over

Thermally Conductive, Healable Glass Fiber Cloth Reinforced Polymer Composite based on β-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance.

Authors :
Chen, Fang
Pang, Xiao-Yan
Zhang, Ze-Ping
Rong, Min-Zhi
Zhang, Ming-Qiu
Source :
Chinese Journal of Polymer Science (Springer Science & Business Media B.V.). May2024, Vol. 42 Issue 5, p643-654. 12p.
Publication Year :
2024

Abstract

To simultaneously endow thermal conductivity, high glass transition temperature (Tg) and healing capability to glass fiber/epoxy (GFREP) composite, dynamic crosslinked epoxy resin bearing reversible β-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth (GFC@BNNSs). The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs. Then, the GFC@BNNSs were impregnated with the mixture of lower concentration (3-glycidyloxypropyl) trimethoxysilane grafted BN micron sheets, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride, which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances. The resultant GFREP composite containing less boron nitride particles (17.6 wt%) exhibited superior in-plane (3.29 W·m−1·K−1) and through-plane (1.16 W·m−1·K−1) thermal conductivities, as well as high Tg of 204 °C (Tg of the unfilled epoxy=177 °C). The reversible transesterification reaction enabled closure of interlaminar cracks within the composite, achieving decent healing efficiencies estimated by means of tensile strength (71.2%), electrical breakdown strength (83.6%) and thermal conductivity (69.1%). The present work overcame the disadvantages of conventional thermally conductive composites, and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02567679
Volume :
42
Issue :
5
Database :
Academic Search Index
Journal :
Chinese Journal of Polymer Science (Springer Science & Business Media B.V.)
Publication Type :
Academic Journal
Accession number :
176995910
Full Text :
https://doi.org/10.1007/s10118-024-3076-x