Back to Search Start Over

Two linear energy-preserving compact finite difference schemes for coupled nonlinear wave equations.

Authors :
Hou, Baohui
Liu, Huan
Source :
Applied Numerical Mathematics. Jul2024, Vol. 201, p531-549. 19p.
Publication Year :
2024

Abstract

In this paper, we propose and analyze two highly efficient compact finite difference schemes for coupled nonlinear wave equations containing coupled sine-Gordon equations and coupled Klein-Gordon equations. To construct energy-preserving, high-order accurate and linear numerical methods, we first utilize the scalar auxiliary variable (SAV) approach and introduce three auxiliary functions to rewrite the original problem as a new equivalent system. Then we make use of the compact finite difference method and the Crank-Nicolson method to propose an efficient fully-discrete scheme (SAV-CFD-CN). The modified energy conservation and the convergence of the SAV-CFD-CN scheme are proved in detail, which has fourth-order convergence in space and second-order convergence in time. In order to preserve the discrete energy of original system, we further combine Lagrange multiplier approach, compact finite difference method and the Crank-Nicolson method to propose the second fully-discrete scheme (LM-CFD-CN). The proposed two schemes are high-order accurate, linear and highly efficient, only four symmetric positive definite systems with constant coefficients are required to be solved at each time level. Numerical experiments for the coupled nonlinear wave equations are given to confirm theoretical findings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01689274
Volume :
201
Database :
Academic Search Index
Journal :
Applied Numerical Mathematics
Publication Type :
Academic Journal
Accession number :
176991879
Full Text :
https://doi.org/10.1016/j.apnum.2024.04.004