Back to Search Start Over

The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages

Authors :
Lindgren, Helena
Stenman, Linda
Tärnvik, Arne
Sjöstedt, Anders
Source :
Microbes & Infection. Mar2005, Vol. 7 Issue 3, p467-475. 9p.
Publication Year :
2005

Abstract

Abstract: Intracellular killing of Francisella tularensis by macrophages depends on interferon-gamma (IFN-γ)-induced activation of the cells. The importance of inducible nitric oxide synthase (iNOS) or NADPH phagocyte oxidase (phox) for the cidal activity was studied. Murine IFN-γ-activated peritoneal exudate cells (PEC) produced nitric oxide (NO), measured as nitrite plus nitrate, and superoxide. When PEC were infected with the live vaccine strain, LVS, of F. tularensis, the number of viable bacteria was at least 1000-fold lower in the presence than in the absence of IFN-γ after 48 h of incubation. PEC from iNOS-gene-deficient (iNOS–/–) mice killed F. tularensis LVS less effectively than did PEC from wild-type mice. PEC from phox gene-deficient (p47 phox –/–) mice were capable of killing the bacteria, but killing was less efficient, although still significant, in the presence of NG-monomethyl-l-arginine (NMMLA), an inhibitor of iNOS. A decomposition catalyst of ONOO–, FeTPPS, completely reversed the IFN-γ-induced killing of F. tularensis LVS. Under host cell-free conditions, F. tularensis LVS was exposed to S-nitroso-acetyl-penicillamine (SNAP), which generates NO, or 3-morpholinosydnonimine hydrochloride (SIN-1), which generates NO and superoxide, leading to formation of ONOO–. During 6 h of incubation, SNAP caused no killing of F. tularensis LVS, whereas effective killing occurred in the presence of equimolar concentrations of SIN-1. The results suggest that mechanisms dependent on iNOS and to a minor degree, phox, contribute to the IFN-γ-induced macrophage killing of F. tularensis LVS. ONOO– is likely to be a major mediator of the killing. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
12864579
Volume :
7
Issue :
3
Database :
Academic Search Index
Journal :
Microbes & Infection
Publication Type :
Academic Journal
Accession number :
17699036
Full Text :
https://doi.org/10.1016/j.micinf.2004.11.020