Back to Search Start Over

Toward high strength and large strain hardening Zn alloys via a novel multiscale-heterostructure strategy.

Authors :
Li, Ruimin
Ding, Yutian
Zhang, Hongfei
Wang, Xue
Gao, Yubi
Xu, Jiayu
Source :
Materials Science & Engineering: A. May2024, Vol. 899, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Zn alloy has attracted much attention as a biodegradable material for biomedical applications. However, due to the significant strain softening of Zn alloys, how to break the bottleneck of synergistic yield strength and uniform elongation is an urgent problem to be solved. In this work, a Zn-2.3Cu-0.8Mn (wt.%) alloy was fabricated via low-temperature extrusion and annealing at 330 °C for 1 h to attain dual heterostructures with bimodal grains and multi-scale second phases, focusing on the effect of heterostructure on the mechanical properties. Uniaxial tensile test and loading-unloading-reloading test were applied to reveal the mechanical properties of the Zn-2.3Cu-0.8Mn alloy, while scanning electron microscope, electron backscatter diffraction, and transmission electron microscope were used to characterize its microstructure. Compared with the as-extruded alloy with uniform and fine grains, 330–1 alloy achieves a better combination of strength and uniform elongation (yield strength: 287.8 ± 8.5 MPa, ultimate tensile strength: 321.4 ± 6.8 MPa, and uniform elongation: 14.2 ± 1.8%). The high strength was primarily attributed to the coordination of grain boundary strengthening, hetero-deformation induced strengthening, Orowan strengthening, and dislocation strengthening. Besides, the coarse grains, twinning, as well as the suppression of grain boundary sliding and phase boundary sliding promoted dislocation proliferation and storage capacity, thereby improving work hardening capacity. The large strain hardening capacity was responsible for excellent plasticity. This study provides a feasible strategy for the design of Zn-based alloys with an excellent combination of high strength and strain hardening capacity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09215093
Volume :
899
Database :
Academic Search Index
Journal :
Materials Science & Engineering: A
Publication Type :
Academic Journal
Accession number :
176899727
Full Text :
https://doi.org/10.1016/j.msea.2024.146410