Back to Search Start Over

Assessing the Potential for Photochemical Reflectance Index to Improve the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity in Crop and Soybean.

Authors :
Chen, Jidai
Huang, Lizhou
Zuo, Qinwen
Shi, Jiasong
Source :
Atmosphere. Apr2024, Vol. 15 Issue 4, p463. 19p.
Publication Year :
2024

Abstract

Photosynthesis is influenced by dynamic energy allocation under various environmental conditions. Solar-induced chlorophyll fluorescence (SIF), an important pathway for dissipating absorbed energy, has been extensively used to evaluate gross primary productivity (GPP). However, the potential for photochemical reflectance index (PRI), as an indicator of non-photochemical quenching (NPQ), to improve the SIF-based GPP estimation, has not been thoroughly investigated. In this study, using continually tower-based observations, we examined how PRI affected the link between SIF and GPP for corn and soybean at half-hourly and daily timescales. The relationship of GPP to SIF and PRI is impacted by stress indicated by vapor pressure deficit (VPD) and crop water stress index (CWSI). Moreover, the ratio of GPP to SIF of corn was more sensitive to PRI compared to soybean. Whether in Pearson or Partial correlation analysis, the relationships of PRI to the ratio of GPP to SIF were almost all significant, regardless of controlling structural-physiological (stomatal conductance, vegetation indices) and environmental variables (light intensity, etc.). Therefore, PRI significantly affects the SIF–GPP relationship for corn (r > 0.31, p < 0.01) and soybean (r > 0.22, p < 0.05). After combining SIF and PRI using the multi-variable linear model, the GPP estimation has been largely improved (the coefficient of determination, abbreviated as R2, increased from 0.48 to 0.49 to 0.78 to 0.84 and the Root Mean Square Error, abbreviated as RMSE, decreased from 6.38 to 10.22 to 3.56 to 6.60 μ m o l   C O 2 · m − 2 · s − 1 for corn, R2 increased from 0.54 to 0.62 to 0.78 to 0.82 and RMSE decreased from 6.25 to 9.59 to 4.34 to 6.60 μ m o l   C O 2 · m − 2 · s − 1 for soybean). It suggests that better GPP estimations for corn and soybean can be obtained when SIF is combined with PRI. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
15
Issue :
4
Database :
Academic Search Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
176880374
Full Text :
https://doi.org/10.3390/atmos15040463