Back to Search Start Over

Mulberry Leaf Dietary Supplementation Can Improve the Lipo-Nutritional Quality of Pork and Regulate Gut Microbiota in Pigs: A Comprehensive Multi-Omics Analysis.

Authors :
Hou, Junjie
Ji, Xiang
Chu, Xiaoran
Wang, Binjie
Sun, Kangle
Wei, Haibo
Zhang, Yu
Song, Zhen
Wen, Fengyun
Source :
Animals (2076-2615). Apr2024, Vol. 14 Issue 8, p1233. 18p.
Publication Year :
2024

Abstract

Simple Summary: Regulating the lipid nutritional profile of meat by balancing intramuscular fat and backfat is a difficult problem in pork production. In this study, we found that feed supplementation with mulberry leaves increased intramuscular fat while simultaneously reducing backfat. The results of our study suggest that nutritional supplementation with mulberry leaves may be used in pork production to improve the lipid nutrition of meat. Mulberry leaves, a common traditional Chinese medicine, represent a potential nutritional strategy to improve the fat profile, also known as the lipo-nutrition, of pork. However, the effects of mulberry leaves on pork lipo-nutrition and the microorganisms and metabolites in the porcine gut remain unclear. In this study, multi-omics analysis was employed in a Yuxi black pig animal model to explore the possible regulatory mechanism of mulberry leaves on pork quality. Sixty Yuxi black pigs were divided into two groups: the control group (n = 15) was fed a standard diet, and the experimental group (n = 45) was fed a diet supplemented with 8% mulberry leaves. Experiments were performed in three replicates (n = 15 per replicate); the two diets were ensured to be nutritionally balanced, and the feeding period was 120 days. The results showed that pigs receiving the diet supplemented with mulberry leaves had significantly reduced backfat thickness (p < 0.05) and increased intramuscular fat (IMF) content (p < 0.05) compared with pigs receiving the standard diet. Lipidomics analysis showed that mulberry leaves improved the lipid profile composition and increased the proportion of triglycerides (TGs). Interestingly, the IMF content was positively correlated with acyl C18:2 and negatively correlated with C18:1 of differential TGs. In addition, the cecal microbiological analysis showed that mulberry leaves could increase the abundance of bacteria such as UCG-005, Muribaculaceae_norank, Prevotellaceae_NK3B31_group, and Limosilactobacillus. Simultaneously, the relative levels of L-tyrosine-ethyl ester, oleic acid methyl ester, 21-deoxycortisol, N-acetyldihydrosphingosine, and mulberrin were increased. Furthermore, we found that mulberry leaf supplementation significantly increased the mRNA expression of lipoprotein lipase, fatty acid-binding protein 4, and peroxisome proliferators-activated receptor γ in muscle (p < 0.01). Mulberry leaf supplementation significantly increased the mRNA expression of diacylglycerol acyltransferase 1 (p < 0.05) while significantly decreasing the expression of acetyl CoA carboxylase in backfat (p < 0.05). Furthermore, mulberry leaf supplementation significantly upregulated the mRNA expression of hormone-sensitive triglyceride lipase and peroxisome proliferator-activated receptor α (p < 0.05) in backfat. In addition, mulberry leaf supplementation led to increased serum leptin and adiponectin (p < 0.01). Collectively, this omic profile is consistent with an increased ratio of IMF to backfat in the pig model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762615
Volume :
14
Issue :
8
Database :
Academic Search Index
Journal :
Animals (2076-2615)
Publication Type :
Academic Journal
Accession number :
176876183
Full Text :
https://doi.org/10.3390/ani14081233