Back to Search Start Over

True exponentially enhanced sensing in the non-Hermitian topological phase.

Authors :
Zhang, Rui
Chen, Tian
Source :
Applied Physics Letters. 4/22/2024, Vol. 124 Issue 17, p1-6. 6p.
Publication Year :
2024

Abstract

Non-Hermitian systems have been employed to construct a high-sensitivity sensor. To evaluate the performance of the sensors, the quantum Fisher information per photon, or equivalently signal-to-noise ratio per photon, is provided as a "true" sensing criterion, which avoids the trivial contribution from the photon numbers. The specific properties of non-Hermitian systems, e.g., exceptional points and skin effect, have been connected to the true exponentially enhanced sensing performance. To date, the relation between the non-Hermitian topological phase and the true sensing performance has not been reported clearly. Here, we construct the high-sensitivity sensor based on the non-Hermitian Su–Schrieffer–Heeger lattice and establish the relationship between the exponentially enhanced sensing and the non-Hermitian topologically nontrivial phase. The saturation of sensing with the size emerges in the sense of one perturbation. Such a limitation can be surpassed through the change of incident positions of driving fields, and the exponentially enhanced sensing reappears. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
124
Issue :
17
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
176871521
Full Text :
https://doi.org/10.1063/5.0200348