Back to Search Start Over

Heterotic growth of hybrids of Arabidopsis thaliana is enhanced by elevated atmospheric CO2.

Authors :
Mishio, Masako
Sudo, Emi
Ozaki, Hiroshi
Oguchi, Riichi
Fujimoto, Ryo
Fujii, Nobuharu
Hikosaka, Kouki
Source :
American Journal of Botany. Apr2024, Vol. 111 Issue 4, p1-13. 13p.
Publication Year :
2024

Abstract

Premise: With the global atmospheric CO2 concentration on the rise, developing crops that can thrive in elevated CO2 has become paramount. We investigated the potential of hybridization as a strategy for creating crops with improved growth in predicted elevated atmospheric CO2. Methods: We grew parent accessions and their F1 hybrids of Arabidopsis thaliana in ambient and elevated atmospheric CO2 and analyzed numerous growth traits to assess their productivity and underlying mechanisms. Results: The heterotic increase in total dry mass, relative growth rate and leaf net assimilation rate was significantly greater in elevated CO2 than in ambient CO2. The CO2 response of net assimilation rate was positively correlated with the CO2 response of leaf nitrogen productivity and with that of leaf traits such as leaf size and thickness, suggesting that hybridization‐induced changes in leaf traits greatly affected the improved performance in elevated CO2. Conclusions: Vegetative growth of hybrids seems to be enhanced in elevated CO2 due to improved photosynthetic nitrogen‐use efficiency compared with parents. The results suggest that hybrid crops should be well‐suited for future conditions, but hybrid weeds may also be more competitive. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029122
Volume :
111
Issue :
4
Database :
Academic Search Index
Journal :
American Journal of Botany
Publication Type :
Academic Journal
Accession number :
176869476
Full Text :
https://doi.org/10.1002/ajb2.16317