Back to Search Start Over

Insight into the dynamics of bioconvective Walter’s-B nanofluid flow subjected to Cattaneo–Christov heat flux and activation energy.

Authors :
Rashid, Amjid
Ali, Liaqat
Madassar, Naeem
Tahir, Qaisar Nadeem
Source :
Modern Physics Letters B. Apr2024, p1. 22p. 20 Illustrations, 6 Charts.
Publication Year :
2024

Abstract

In order to study the implementation of the generalized magnetohydrodynamic (MHD) bioconvective aspects of the Walter’s-B fluid flows over a convectively heated stretched sheet in the presence of activation energy and numerous boundary conditions, the non-homogeneous nanofluid flow model is used. Here, the nonlinear differential equations illustrating the current nanofluid flow model of non-Newtonian fluid explicitly include the concentration of both motile microbes and solid nanoparticles. Furthermore, the associated temperature, impact of thermal radiation and the Cattaneo–Christov heat flux model are discussed. The similarity transformations are formally displayed to transfer the consequential reduction in the mathematical complexity of the existing physical situation by converting partial differential equations (PDEs) into a nonlinear associated framework of ordinary differential equations (ODEs). Furthermore, the homotopy analysis method (HAM) through the MATLAB tool is used to numerically solve the dimensionless similarity equations. The results are extremely well demonstrated. In this manner, the significant engineering procedures are more accurately and entirely estimated before being reported. The results of the fixed physical factors of velocity, temperature, concentration, and microbe concentration profiles are effectively demonstrated through multiple types of illustrations and comprehensive explanations. The principal assumption is that the greater significance of the bioconvection Lewis and Peclet numbers can lead to a drop in the microbe concentration profile. It is observed that the concentration profile is reduced with the greater value of the concentration relaxation parameter. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02179849
Database :
Academic Search Index
Journal :
Modern Physics Letters B
Publication Type :
Academic Journal
Accession number :
176856189
Full Text :
https://doi.org/10.1142/s0217984924503305