Back to Search
Start Over
The Dimension of Harmonic Measure on Some AD-Regular Flat Sets of Fractional Dimension.
- Source :
-
IMRN: International Mathematics Research Notices . Apr2024, Vol. 2024 Issue 8, p6579-6605. 27p. - Publication Year :
- 2024
-
Abstract
- In this paper, it is shown that if |$E\subset {{\mathbb {R}}}^{n+1}$| is an |$s$| -AD regular compact set, with |$s\in [n-\frac 12,n)$| , and |$E$| is contained in a hyperplane or, more generally, in an |$n$| -dimensional |$C^{1}$| manifold, then the Hausdorff dimension of the harmonic measure for the domain |${{\mathbb {R}}}^{n+1}\setminus E$| is strictly smaller than |$s$| , that is, than the Hausdorff dimension of |$E$|. [ABSTRACT FROM AUTHOR]
- Subjects :
- *FRACTALS
*FRACTAL dimensions
*HYPERPLANES
Subjects
Details
- Language :
- English
- ISSN :
- 10737928
- Volume :
- 2024
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- IMRN: International Mathematics Research Notices
- Publication Type :
- Academic Journal
- Accession number :
- 176725463
- Full Text :
- https://doi.org/10.1093/imrn/rnad184