Back to Search Start Over

Three-metal ion mechanism of cross-linked and uncross-linked DNA polymerase β: A theoretical study.

Authors :
Chu, Wen-Ting
Suo, Zucai
Wang, Jin
Source :
Journal of Chemical Physics. 4/21/2024, Vol. 160 Issue 15, p1-9. 9p.
Publication Year :
2024

Abstract

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase β (Polβ) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by β-elimination. In addition, the polymerase activity of Polβ employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polβ complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polβ's catalytic mechanism provides valuable insights into DNA replication and damage repair. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
15
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
176721052
Full Text :
https://doi.org/10.1063/5.0200109