Back to Search Start Over

Static versus dynamically polarizable environments within the many-body GW formalism.

Authors :
Amblard, David
Blase, Xavier
Duchemin, Ivan
Source :
Journal of Chemical Physics. 4/21/2024, Vol. 160 Issue 15, p1-12. 12p.
Publication Year :
2024

Abstract

Continuum- or discrete-polarizable models for the study of optoelectronic processes in embedded subsystems rely mostly on the restriction of the surrounding electronic dielectric response to its low frequency limit. Such a description hinges on the assumption that the electrons in the surrounding medium react instantaneously to any excitation in the central subsystem, thus treating the environment in the adiabatic limit. Exploiting a recently developed embedded GW formalism with an environment described at the fully ab initio level, we assess the merits of the adiabatic limit with respect to an environment where the full dynamics of the dielectric response are considered. Furthermore, we show how to properly take the static limit of the environment's susceptibility by introducing the so-called Coulomb-hole and screened-exchange contributions to the reaction field. As a first application, we consider a C60 molecule at the surface of a C60 crystal, namely, a case where the dynamics of the embedded and embedding subsystems are similar. The common adiabatic assumption, when properly treated, generates errors below 10% on the polarization energy associated with frontier energy levels and associated energy gaps. Finally, we consider a water molecule inside a metallic nanotube, the worst case for the environment's adiabatic limit. The error on the gap polarization energy remains below 10%, even though the error on the frontier orbital polarization energies can reach a few tenths of an electronvolt. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
15
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
176721007
Full Text :
https://doi.org/10.1063/5.0203637