Back to Search
Start Over
Insights into elastic properties of coarse-grained DNA models: q-stiffness of cgDNA vs cgDNA+.
- Source :
-
Journal of Chemical Physics . 4/14/2024, Vol. 160 Issue 14, p1-11. 11p. - Publication Year :
- 2024
-
Abstract
- Coarse-grained models have emerged as valuable tools to simulate long DNA molecules while maintaining computational efficiency. These models aim at preserving interactions among coarse-grained variables in a manner that mirrors the underlying atomistic description. We explore here a method for testing coarse-grained vs all-atom models using stiffness matrices in Fourier space (q-stiffnesses), which are particularly suited to probe DNA elasticity at different length scales. We focus on a class of coarse-grained rigid base DNA models known as cgDNA and its most recent version, cgDNA+. Our analysis shows that while cgDNA+ closely follows the q-stiffnesses of the all-atom model, the original cgDNA shows some deviations for twist and bending variables, which are rather strong in the q → 0 (long length scale) limit. The consequence is that while both cgDNA and cgDNA+ give a suitable description of local elastic behavior, the former misses some effects that manifest themselves at longer length scales. In particular, cgDNA performs poorly on twist stiffness, with a value much lower than expected for long DNA molecules. Conversely, the all-atom and cgDNA+ twist are strongly length scale dependent: DNA is torsionally soft at a few base pair distances but becomes more rigid at distances of a few dozen base pairs. Our analysis shows that the bending persistence length in all-atom and cgDNA+ is somewhat overestimated. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ELASTICITY
*DNA probes
*DNA
*BASE pairs
Subjects
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 160
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 176628331
- Full Text :
- https://doi.org/10.1063/5.0197053