Back to Search Start Over

Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs.

Authors :
He, Wei
Liu, Xinyu
Feng, Ye
Ding, Hongwei
Sun, Haoyang
Li, Zhongyu
Shi, Baoming
Source :
Journal of Animal Science & Biotechnology. 4/8/2024, Vol. 15 Issue 1, p1-19. 19p.
Publication Year :
2024

Abstract

Background: Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. Results: Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. Conclusions: Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16749782
Volume :
15
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Animal Science & Biotechnology
Publication Type :
Academic Journal
Accession number :
176627855
Full Text :
https://doi.org/10.1186/s40104-024-01014-7