Back to Search Start Over

Effects of seawater acidification and warming on morphometrics and biomineralization-related gene expression during embryo-larval development of a lightly-calcified echinoderm.

Authors :
Song, Mingshan
Huo, Da
Pang, Lei
Yu, Zhenglin
Yang, Xiaolong
Zhang, Anguo
Zhao, Ye
Zhang, Libin
Yuan, Xiutang
Source :
Environmental Research. May2024, Vol. 248, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

CO 2 -induced ocean acidification and warming pose ecological threats to marine life, especially calcifying species such as echinoderms, who rely on biomineralization for skeleton formation. However, previous studies on echinoderm calcification amid climate change had a strong bias towards heavily calcified echinoderms, with little research on lightly calcified ones, such as sea cucumbers. Here, we analyzed the embryo-larval development and their biomineralization–related gene expression of a lightly calcified echinoderm, the sea cucumber (Apostichopus japonicus), under experimental seawater acidification (OA) and/or warming (OW). Results showed that OA (– 0.37 units) delayed development and decreased body size (8.58–56.25 % and 0.36–19.66 % decreases in stage duration and body length, respectively), whereas OW (+3.1 °C) accelerated development and increased body size (33.99–55.28 % increase in stage duration and 2.44–14.41 % enlargement in body length). OW buffered the negative effects of OA on the development timing and body size of A. japonicus. Additionally, no target genes were expressed in the blastula stage, and only two biomineralization genes (colp3α , cyp2) and five TFs (erg , tgif , foxN2/3 , gata1/2/3, and tbr) were expressed throughout the embryo-larval development. Our findings suggest that the low calcification in A. japonicus larvae may be caused by biomineralization genes contraction, and low expression of those genes. Furthermore, this study indicated that seawater acidification and warming affect expression of biomineralization-related genes, and had an effect on body size and development rate during the embryo-larval stage in sea cucumbers. Our study is a first step toward a better understanding of the complexity of high p CO 2 on calcification and helpful for revealing the adaptive strategy of less-calcified echinoderms amid climate change. [Display omitted] • A skeletogenic GRN in early development of holothurians was speculated. • Ocean acidification and warming affect biomineralization-related genes expression. • Acidification delayed development and shortened body length. • Warming mitigated negative effects of acidification. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00139351
Volume :
248
Database :
Academic Search Index
Journal :
Environmental Research
Publication Type :
Academic Journal
Accession number :
176612072
Full Text :
https://doi.org/10.1016/j.envres.2024.118248