Back to Search Start Over

An improved transformer-based concrete crack classification method.

Authors :
Ye, Guanting
Dai, Wei
Tao, Jintai
Qu, Jinsheng
Zhu, Lin
Jin, Qiang
Source :
Scientific Reports. 3/14/2024, Vol. 14 Issue 1, p1-11. 11p.
Publication Year :
2024

Abstract

In concrete structures, surface cracks are an important indicator for assessing the durability and serviceability of the structure. Existing convolutional neural networks for concrete crack identification are inefficient and computationally costly. Therefore, a new Cross Swin transformer-skip (CSW-S) is proposed to classify concrete cracks. The method is optimized by adding residual links to the existing Cross Swin transformer network and then trained and tested using a dataset with 17,000 images. The experimental results show that the improved CSW-S network has an extended range of extracted image features, which improves the accuracy of crack recognition. A detection accuracy of 96.92% is obtained using the trained CSW-S without pretraining. The improved transformer model has higher recognition efficiency and accuracy than the traditional transformer model and the classical CNN model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
176602806
Full Text :
https://doi.org/10.1038/s41598-024-54835-x