Back to Search Start Over

The Use of Spatially Multi-Component Plasma Structures and Combined Energy Deposition for High-Speed Flow Control: A Selective Review.

Authors :
Azarova, Olga A.
Kravchenko, Oleg V.
Source :
Energies (19961073). Apr2024, Vol. 17 Issue 7, p1632. 39p.
Publication Year :
2024

Abstract

This review examines studies aimed at the organization of energy (non-mechanical) control of high-speed flow/flight using spatially multi-component plasma structures and combined energy deposition. The review covers selected works on the experimental acquisition and numerical modeling of multi-component plasma structures and the use of sets of actuators based on plasma of such a spatial type for the purposes of control of shock wave/bow shock wave–energy source interaction, as well as control of shock wave–boundary layer interaction. A series of works on repetitive multiple laser pulse plasma structures is also analyzed from the point of view of examining shock wave/bow shock wave–boundary layer interaction. Self-sustained theoretical models for laser dual-pulse, multi-mode laser pulses, and self-sustained glow discharge are also considered. Separate sections are devoted to high-speed flow control using combined physical phenomena and numerical prediction of flow control possibilities using thermal longitudinally layered plasma structures. The wide possibilities for organization and applying spatially multi-component structured plasma for the purposes of high-speed flow control are demonstrated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
7
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
176593287
Full Text :
https://doi.org/10.3390/en17071632