Back to Search Start Over

Regulating two-dimensional colloidal crystal assembly through contactless acoustic annealing.

Authors :
He, Guanzhou
Qiu, Tengfei
Wang, Xin
Jin, Mingliang
Zhou, Guofu
Giersig, Michael
Kempa, Krzysztof
Akinoglu, Eser Metin
Source :
Journal of Applied Physics. 4/14/2024, Vol. 135 Issue 14, p1-13. 13p.
Publication Year :
2024

Abstract

Two-dimensional colloidal crystals assembled from polystyrene nanospheres have emerged as a pivotal foundation for fabricating large-area nano-functional surfaces. These assemblies, defined by their hexagonal close-packed configuration and interlaced with grain boundaries, have garnered significant attention for applications in plasmonic structures, catalysts, photonic crystals, and inverse opals. Nonetheless, achieving consistent large-scale regularity has proven challenging due to unpredictable crystal growth and the introduction of defects. Utilizing acoustic waves excited from the airside, our experiments demonstrate the significant effects of such waves on the self-assembly process, leading to larger crystal domains and reduced defects. In comparison to the extensively studied water-end excitation techniques, our air-end excitation method introduces a novel dynamic in regulating colloidal monolayer crystallization and presents a comprehensive analysis of varying acoustic parameters, frequency, amplitude, and waveform. These findings reveal the potential of airside acoustic annealing in refining the structure of two-dimensional colloidal arrays. To elucidate our experimental observations, we delve into the theoretical underpinnings of particle dynamics, driven by classical hydromechanical constraints like surface tension and gravity. Using a qualitative estimate, we shed light on the resonant excitations and their potential role in optimizing the self-assembly process, especially focusing on resonances pertinent for enhancing cluster enlargements. Conclusively, our research, steeped in robust theoretical frameworks and groundbreaking experimental techniques, offers a multifaceted solution for perfecting two-dimensional colloidal arrays. This combined approach not only broadens the scope of acoustically induced crystallization but also charts a path for its adoption across diverse environments, signaling transformative prospects for nanomanufacturing and optical research. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
135
Issue :
14
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
176580563
Full Text :
https://doi.org/10.1063/5.0185692