Back to Search Start Over

Genotype-dependent N-glycosylation and newly exposed O-glycosylation affect plasmin-induced cleavage of histidine-rich glycoprotein (HRG).

Authors :
Yang Zou
Pronker, Matti F.
Damen, J. Mirjam A.
Heck, Albert J. R.
Reiding, Karli R.
Source :
Journal of Biological Chemistry. Mar2024, Vol. 300 Issue 3, p1-12. 12p.
Publication Year :
2024

Abstract

Histidine-rich glycoprotein (HRG) is an abundant plasma protein harboring at least three N-glycosylation sites. HRG integrates many biological processes, such as coagulation, antiangiogenic activity, and pathogen clearance. Importantly, HRG is known to exhibit five genetic variants with minor allele frequencies of more than 10%. Among them, Pro204Ser can induce a fourth N-glycosylation site (Asn202). Considerable efforts have been made to reveal the biological function of HRG, whereas data on HRG glycosylation are scarcer. To close this knowledge gap, we used C18-based LC-MS/MS to study the glycosylation characteristics of six HRG samples from different sources. We used endogenous HRG purified from human plasma and compared its glycosylation to that of the recombinant HRG produced in Chinese hamster ovary cells or human embryonic kidney 293 cells, targeting distinct genotypic isoforms. In endogenous plasma HRG, every N-glycosylation site was occupied predominantly with a sialylated diantennary complex-type glycan. In contrast, in the recombinant HRGs, all glycans showed different antennarities, sialylation, and core fucosylation, as well as the presence of oligomannose glycans, LacdiNAcs, and antennary fucosylation. Furthermore, we observed two previously unreported O-glycosylation sites in HRG on residues Thr273 and Thr274. These sites together showed more than 90% glycan occupancy in all HRG samples studied. To investigate the potential relevance of HRG glycosylation, we assessed the plasmin-induced cleavage of HRG under various conditions. These analyses revealed that the sialylation of the N- and O-glycans as well as the genotypedependent N-glycosylation significantly influenced the kinetics and specificity of plasmin-induced cleavage of HRG. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
300
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
176572018
Full Text :
https://doi.org/10.1016/j.jbc.2024.105683