Back to Search Start Over

Biochar alleviated the toxic effects of microplastics-contaminated geocarposphere soil on peanut (Arachis hypogaea L.) pod development: roles of pod nutrient metabolism and geocarposphere microbial modulation.

Authors :
Liyu Yang
Haiyan Liang
Qi Wu
Pu Shen
Source :
Journal of the Science of Food & Agriculture. 3/30/2024, Vol. 104 Issue 5, p2990-3001. 12p.
Publication Year :
2024

Abstract

BACKGROUND: The accumulation of microplastics in agricultural soil poses a threat to the sustainability of agriculture, impacting crop growth and soil health. Due to the geocarpy feature of peanut, geocarposphere soil environment is critical to pod development and its nutritional quality. While the effects of microplastics in the rhizosphere have been studied, their impact on peanut pod in the geocarposphere remains unknown. Biochar has emerged as a potential soil agent with the ability to remediate soil contamination. However, the mechanisms of biochar in mitigating the toxic effects of microplastics-contaminated geocarposphere soil on peanut pod development remain largely unexplored. RESULTS: We evaluated the peanut pod performance and microbiome when facing microplastics contamination and biochar amendment in geocarposphere soil. The results showed that microplastics present in geocarposphere soil could directly enter the peanut pod, cause pod developmental disorder and exert adverse effects on nutritional quality. Aberrant expression of key genes associated with amino acid metabolism, lipid synthesis, and auxin and ethylene signaling pathways were the underlying molecular mechanisms of microplastics-induced peanut pod developmental inhibition. However, these expression abnormalities could be reversed by biochar application. In addition, peanut geocarposphere microbiome results showed that biochar application could restore the diversity of microbial communities inhibited by microplastics contamination and promote the relative abundance of bacteria correlated with pathogen resistance and nitrogen cycle of geocarposphere soil, further promoting peanut pod development. CONCLUSION: This study demonstrated that biochar application is an effective strategy to mitigate the toxic effects of microplastics-contaminated geocarposphere soil on pod development and nutritional quality. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00225142
Volume :
104
Issue :
5
Database :
Academic Search Index
Journal :
Journal of the Science of Food & Agriculture
Publication Type :
Academic Journal
Accession number :
176571332
Full Text :
https://doi.org/10.1002/jsfa.13191