Back to Search Start Over

Amperometry and Electron Microscopy show Stress Granules Induce Homotypic Fusion of Catecholamine Vesicles.

Authors :
Gu, Hui
Gu, Chaoyi
Locker, Nicolas
Ewing, Andrew G.
Source :
Angewandte Chemie. Apr2024, Vol. 136 Issue 16, p1-6. 6p.
Publication Year :
2024

Abstract

An overreactive stress granule (SG) pathway and long‐lived, stable SGs formation are thought to participate in the progress of neurodegenerative diseases (NDs). To understand if and how SGs contribute to disorders of neurotransmitter release in NDs, we examined the interaction between extracellular isolated SGs and vesicles. Amperometry shows that the vesicular content increases and dynamics of vesicle opening slow down after vesicles are treated with SGs, suggesting larger vesicles are formed. Data from transmission electron microscopy (TEM) clearly shows that a portion of large dense‐core vesicles (LDCVs) with double/multiple cores appear, thus confirming that SGs induce homotypic fusion between LDCVs. This might be a protective step to help cells to survive following high oxidative stress. A hypothetical mechanism is proposed whereby enriched mRNA or protein in the shell of SGs is likely to bind intrinsically disordered protein (IDP) regions of vesicle associated membrane protein (VAMP) driving a disrupted membrane between two closely buddled vesicles to fuse with each other to form double‐core vesicles. Our results show that SGs induce homotypic fusion of LDCVs, providing better understanding of how SGs intervene in pathological processes and opening a new direction to investigations of SGs involved neurodegenerative disease. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
136
Issue :
16
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
176537310
Full Text :
https://doi.org/10.1002/ange.202400422