Back to Search Start Over

COF‐Topological Quantum Material Nano‐heterostructure for CO2 to Syngas Production under Visible Light.

Authors :
Dey, Anupam
Pradhan, Jayita
Biswas, Sandip
Ahamed Rahimi, Faruk
Biswas, Kanishka
Maji, Tapas Kumar
Source :
Angewandte Chemie. Apr2024, Vol. 136 Issue 16, p1-11. 11p.
Publication Year :
2024

Abstract

Efficient solar‐driven syngas production (CO+H2 mixture) from CO2 and H2O with a suitable photocatalyst and fundamental understanding of the reaction mechanism are the desired approach towards the carbon recycling process. Herein, we report the design and development of an unique COF‐topological quantum material nano‐heterostructure, COF@TI with a newly synthesized donor‐acceptor based COF and two dimensional (2D) nanosheets of strong topological insulator (TI), PbBi2Te4. The intrinsic robust metallic surfaces of the TI act as electron reservoir, minimising the fast electron‐hole recombination process, and the presence of 6s2 lone pairs in Pb2+ and Bi3+ in the TI helps for efficient CO2 binding, which are responsible for boosting overall catalytic activity. In variable ratio of acetonitrile‐water (MeCN : H2O) solvent mixture COF@TI produces syngas with different ratios of CO and H2. COF@TI nano‐heterostructure enables to produce higher amount of syngas with more controllable ratios of CO and H2 compared to pristine COF. The electron transfer route from COF to TI was realized from Kelvin probe force microscopy (KPFM) analysis, charge density difference calculation, excited state lifetime and photoelectrochemical measurements. Finally, a probable mechanistic pathway has been established after identifying the catalytic sites and reaction intermediates by in situ DRIFTS study and DFT calculation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
136
Issue :
16
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
176537269
Full Text :
https://doi.org/10.1002/ange.202315596