Back to Search Start Over

Distinct regulation of two flagella by calcium during chemotaxis of male gametes in the brown alga Mutimo cylindricus (Cutleriaceae, Tilopteridales).

Authors :
Kinoshita‐Terauchi, Nana
Shiba, Kogiku
Umezawa, Taiki
Inaba, Kazuo
Source :
Journal of Phycology. Apr2024, Vol. 60 Issue 2, p409-417. 9p.
Publication Year :
2024

Abstract

Brown algal male gametes show chemotaxis to the sex pheromone that is released from female gametes. The chemotactic behavior of the male gametes is controlled by the changes in the beating of two flagella known as the anterior and posterior flagellum. Our previous study using Mutimo cylindricus showed that the sex pheromone induced an increment in both the deflection angle of the anterior flagellum and sustained unilateral bend of the posterior flagellum, but the mechanisms regulating these two flagellar waveforms were not fully revealed. In this study, we analyzed the changes in swimming path and flagellar waveforms with a high‐speed recording system under different calcium conditions. The extracellular Ca2+ concentration at 10−3 M caused an increment in the deflection angle of the anterior flagellum only when ionomycin was absent. No sustained unilateral bend of the posterior flagellum was induced either in the absence or presence of ionomycin in extracellular Ca2+ concentrations below 10−2 M. Real‐time Ca2+ imaging revealed that there is a spot near the basal part of anterior flagellum showing higher Ca2+ than in the other parts of the cell. The intensity of the spot slightly decreased when male gametes were treated with the sex pheromone. These results suggest that Ca2+‐dependent changes in the anterior and posterior flagellum are regulated by distinct mechanisms and that the increase in the anterior flagellar deflection angle and sustained unilateral bend of the posterior flagellum may not be primarily induced by the Ca2+ concentration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223646
Volume :
60
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Phycology
Publication Type :
Academic Journal
Accession number :
176536355
Full Text :
https://doi.org/10.1111/jpy.13422