Back to Search Start Over

Robust, Ultrafast and Reversible Photoswitching in Bulk Polymers Enabled by Octupolar Molecule Design.

Authors :
Fang, Long
Lin, Ziwei
Zhang, Yang
Ye, Bin
Li, Jing
Ran, Qishan
Wang, Xiaotong
Yang, Meijia
Yuan, Zhongke
Lin, Xiaofeng
Yu, Dingshan
Chen, Xudong
Li, Quan
Source :
Angewandte Chemie International Edition. Apr2024, Vol. 63 Issue 16, p1-9. 9p.
Publication Year :
2024

Abstract

Improving the photoswitching rate and robustness of photochromic molecules in bulk solids is paramount for practical applications but remains an on‐going challenge. Here, we introduce an octupolar design paradigm to develop a new family of visible light organic photoswitches, namely multi‐branched octupolar Stenhouse Adducts (MOPSAs) featuring a C3‐symmetrical A3‐(D‐core) architecture with a dipolar donor–acceptor (D–A) photochrome in each branch. Our design couples multi‐dimensional geometric and electronic effects of MOPSAs to enable robust ultrafast reversible photoswitching in bulk polymers. Specifically, the optimal MOPSA (4 wt %) in commercial polyurethane films accomplishes nearly 100 % discoloration in 6 s under visible light with ∼ 100 % thermal‐recovery in 17.4 s at 60 °C, while the acquired kinetics constants are 3∼7 times that of dipolar DASA counterpart and 1∼2 orders of magnitude higher than those of reported DASAs in polymers. Importantly, the MOPSA‐doped polymer films sustain 500 discoloration/recovery cycles with slow degradation, superior to the existing DASAs in polymers (≤30 cycles). We discover that multi‐dipolar coupling in MOPSA enables enhanced polarization and electron delocalization, promoting the rate‐determining thermal cyclization, while the branched and non‐planar geometry of MOPSA induces large free volume to facilitate the isomerization. This design can be extended to develop spiropyran or azobenzene‐based ultrafast photochromic films. The superior photoswitching performance of MOPSAs together with their high‐yield and scalable synthesis and facile film processing inspires us to explore their versatile uses as smart inks or labels for time‐temperature indicators, optical logic encryption and multi‐levelled data encryption. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
63
Issue :
16
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
176535642
Full Text :
https://doi.org/10.1002/anie.202402349