Back to Search
Start Over
Dynamic responses of steady-state transition structures under impact loading.
- Source :
-
Thin-Walled Structures . May2024, Vol. 198, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- • Introduced an optimized and expanded three dimensional steady-state transition structure. • Proposed a novel impact-resistant structure based on the steady-state transition design. • Demonstrated significant energy absorption features and energy oscillations in the steady-state transition structure under impact. • Highlighted the development potential of steady-state transition structures in the field of impact resistance. Advancements in materials science and mechanical system have spurred widespread investigation into non-traditional structures. In particular, engineers have shown interest in steady-state transition structures with phase transition properties. In this paper, a three-dimensional steady-state transition structure was established using the genetic algorithm and three-dimensional expansion, on which the low-velocity impact tests were carried out. Force response and energy absorption of the steady-state transition structures under impact were studied. From the force response and energy absorption curves, it can be seen that the steady-state transition structures absorb and store portion of impact energy temporarily, gradually releasing it after impact peak. This unique energy behavior results in a steady state transition structure with a long impact response time and a low peak impact force under impact. In addition, investigation into energy transfer within these structures reveals that energy oscillations occur among multilayered bistable surfaces during steady-state transitions, further improving the energy dissipation. Further, the dynamic response and damage modes of the honeycomb structure and the steady state transition structure were compared, showing that the damage mode of the steady state transition structure under the impact is an overall damage, in contrast to the penetration damage of the honeycomb structure. Notably, the steady-state transition structures showcase a higher proportion of elastic strain energy during impacts, effectively delaying structural damage onset, and dispersing impact energy, thus enhancing impact resistance. In light of these findings, the demonstrated behavior of steady-state transition structures in absorbing and dissipating impact energy showcases their potential as promising avenues for the development of more effective impact protection strategies. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02638231
- Volume :
- 198
- Database :
- Academic Search Index
- Journal :
- Thin-Walled Structures
- Publication Type :
- Academic Journal
- Accession number :
- 176502396
- Full Text :
- https://doi.org/10.1016/j.tws.2024.111761