Back to Search Start Over

Comprehensive analysis of bio-inspired laminated composites plates using a quasi-3D theory and higher order FE models.

Authors :
Karamanli, Armagan
Vo, Thuc P.
Eltaher, Mohamed A.
Source :
Thin-Walled Structures. May2024, Vol. 198, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Higher order FEMs are proposed for bio-inspired laminated composites plates using a quasi-3D theory for the first time. • Three different FEMs are derived based on non-conforming elements with different number of nodes and degree of freedom. • No shear locking phenomenon was observed in the analyses conducted using these FEMs. • Effects of lamination scheme, orthotropy ratio and aspect ratio on the mechanical response of the bio-inspired helicoidal composite plates are examined. A comprehensive study is carried out by employing various finite element models (FEMs) for the bending, buckling stability and free vibration analyses of bio-inspired helicoidal composite plates with various lamination schemes. A higher order quasi-3D kinematic plate theory is developed to include a shear deformation effect. The variational formulation of the problem is exploited to derive the equations of motion, element stiffness, geometrical stiffness, and mass matrices based on a non-conforming rectangular element. Three different finite elements models are derived based on non-conforming elements with different number of nodes and degree of freedom. The developed finite element model has been validated with those found in the open literature. The effects of boundary condition, lamination scheme, orthotropy ratio and aspect ratio on the mechanical response of the bio-inspired helicoidal composite plates are examined. Notably, for the lamination schemes investigated in this study, no shear locking phenomenon was observed in the analyses conducted using these FEMs. Dimensionless centre deflections, critical buckling loads and fundamental frequencies of bio-inspired helicoidal composite plates vary depending on the type of lamination scheme, boundary condition and aspect ratio. The new orientation schemes can replace the traditional ones to overcome the shear singularity and overcome the delamination defects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02638231
Volume :
198
Database :
Academic Search Index
Journal :
Thin-Walled Structures
Publication Type :
Academic Journal
Accession number :
176502377
Full Text :
https://doi.org/10.1016/j.tws.2024.111735