Back to Search Start Over

Foraging predicts the evolution of warning coloration and mimicry in snakes.

Authors :
Yosuke Kojima
Ryosuke K. Ito
Ibuki Fukuyama
Yusaku Ohkubo
Durso, Andrew M.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 3/12/2024, Vol. 121 Issue 11, p1-9. 24p.
Publication Year :
2024

Abstract

Warning coloration and Batesian mimicry are classic examples of Darwinian evolution, but empirical evolutionary patterns are often paradoxical. We test whether foraging costs predict the evolution of striking coloration by integrating genetic and ecological data for aposematic and mimetic snakes (Elapidae and Dipsadidae). Our phylogenetic comparison on a total of 432 species demonstrated that dramatic changes in coloration were well predicted by foraging strategy. Multiple tests consistently indicated that warning coloration and conspicuous mimicry were more likely to evolve in species where foraging costs of conspicuous appearance were relaxed by poor vision of their prey, concealed habitat, or nocturnal activity. Reversion to crypsis was also well predicted by ecology for elapids but not for dipsadids. In contrast to a theoretical prediction and general trends, snakes' conspicuous coloration was correlated with secretive ecology, suggesting that a selection regime underlies evolutionary patterns. We also found evidence that mimicry of inconspicuous models (pitvipers) may have evolved in association with foraging demand for crypsis. These findings demonstrate that foraging is an important factor necessary to understand the evolution, persistence, and diversity of warning coloration and mimicry of snakes, highlighting the significance of additional selective factors in solving the warning coloration paradox. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
121
Issue :
11
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
176487803
Full Text :
https://doi.org/10.1073/pnas.2318857121