Back to Search Start Over

Molecular dynamics simulation of effects of loading parameters on fatigue crack growth behavior in titanium single crystal.

Authors :
Liu, Xinran
Chang, Le
Ma, Tianhao
Zhou, Changyu
Source :
Fatigue & Fracture of Engineering Materials & Structures. May2024, Vol. 47 Issue 5, p1715-1730. 16p.
Publication Year :
2024

Abstract

The fatigue crack growth behavior in single‐crystal titanium with a prismatic crack was simulated using molecular dynamics (MD) considering the effects of applied temperature, strain ratio, and strain rate. The results indicate that the material exhibits transient cyclic hardening behavior and dominant cyclic softening behavior. The peak tensile stress decreases with increasing temperature or decreasing strain rate. The deformation mechanism for crack growth involves prismatic dislocation emission and the formation of vacancy defects at different loading conditions. Deformation twinning occurs at the highest temperature, and a secondary crack emerges at the highest strain rate. The Mises stress concentration at the twin boundary and the coalescence between the initial and secondary cracks may accelerate crack propagation. The ΔJ shows good linear relationships with fatigue crack growth rate (FCGR), indicating that ΔJ possesses the potential to assess fatigue crack growth behavior at the atomic scale for ductile metallic materials. Highlights: Peak tensile stress is increased by increasing temperature or decreasing strain rate.Prismatic dislocation emission and vacancy defects are the primary failure mechanisms.Twinning and crack coalescence accelerate fatigue crack propagation.The energy‐related ΔJ shows good linear relationships with fatigue crack growth rate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
8756758X
Volume :
47
Issue :
5
Database :
Academic Search Index
Journal :
Fatigue & Fracture of Engineering Materials & Structures
Publication Type :
Academic Journal
Accession number :
176473586
Full Text :
https://doi.org/10.1111/ffe.14268