Back to Search
Start Over
Weak Gurov--Reshetnyak class in metric measure spaces.
- Source :
-
Proceedings of the American Mathematical Society . May2024, Vol. 152 Issue 5, p2103-2116. 14p. - Publication Year :
- 2024
-
Abstract
- We introduce a weak Gurov–Reshetnyak class and discuss its connections to a weak Muckenhoupt A_\infty condition and a weak reverse Hölder inequality in the setting of metric measure spaces with a doubling measure. A John–Nirenberg type lemma is shown for the weak Gurov–Reshetnyak class which gives a specific decay estimate for the oscillation of a function. It implies that a function in the weak Gurov–Reshetnyak class satisfies the weak reverse Hölder inequality. This comes with an upper bound for the reverse Hölder exponent depending on the Gurov–Reshetnyak parameter which allows the study of the asymptotic behavior of the exponent. [ABSTRACT FROM AUTHOR]
- Subjects :
- *METRIC spaces
*METRIC geometry
*EXPONENTS
Subjects
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 152
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 176473203
- Full Text :
- https://doi.org/10.1090/proc/16704