Back to Search Start Over

Weak Gurov--Reshetnyak class in metric measure spaces.

Authors :
Myyryläinen, Kim
Source :
Proceedings of the American Mathematical Society. May2024, Vol. 152 Issue 5, p2103-2116. 14p.
Publication Year :
2024

Abstract

We introduce a weak Gurov–Reshetnyak class and discuss its connections to a weak Muckenhoupt A_\infty condition and a weak reverse Hölder inequality in the setting of metric measure spaces with a doubling measure. A John–Nirenberg type lemma is shown for the weak Gurov–Reshetnyak class which gives a specific decay estimate for the oscillation of a function. It implies that a function in the weak Gurov–Reshetnyak class satisfies the weak reverse Hölder inequality. This comes with an upper bound for the reverse Hölder exponent depending on the Gurov–Reshetnyak parameter which allows the study of the asymptotic behavior of the exponent. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
152
Issue :
5
Database :
Academic Search Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
176473203
Full Text :
https://doi.org/10.1090/proc/16704