Back to Search Start Over

Nonparametric Item Response Models: A Comparison on Recovering True Scores.

Authors :
Franco, Vithor Rosa
Wiberg, Marie
Sousa Bastos, Rafael Valdece
Source :
Psico-USF. out-dez2023, Vol. 28 Issue 4, p685-696. 12p.
Publication Year :
2023

Abstract

Nonparametric procedures are used to add flexibility to models. Three nonparametric item response models have been proposed, but not directly compared: the Kernel smoothing (KS-IRT); the Davidian-Curve (DC-IRT); and the Bayesian semiparametric Rasch model (SP-Rasch). The main aim of the present study is to compare the performance of these procedures in recovering simulated true scores, using sum scores as benchmarks. The secondary aim is to compare their performances in terms of practical equivalence with real data. Overall, the results show that, apart from the DC-IRT, which is the model that performs the worse, all the other models give results quite similar to those when sum scores are used. These results are followed by a discussion with practical implications and recommendations for future studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14138271
Volume :
28
Issue :
4
Database :
Academic Search Index
Journal :
Psico-USF
Publication Type :
Academic Journal
Accession number :
176458094
Full Text :
https://doi.org/10.1590/1413-82712023280403