Back to Search
Start Over
Monoidal categorification and quantum affine algebras II.
- Source :
-
Inventiones Mathematicae . May2024, Vol. 236 Issue 2, p837-924. 88p. - Publication Year :
- 2024
-
Abstract
- We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of i -boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories C g 0 and C g − provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra. [ABSTRACT FROM AUTHOR]
- Subjects :
- *CLUSTER algebras
*AFFINE algebraic groups
*ALGEBRA
Subjects
Details
- Language :
- English
- ISSN :
- 00209910
- Volume :
- 236
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Inventiones Mathematicae
- Publication Type :
- Academic Journal
- Accession number :
- 176453268
- Full Text :
- https://doi.org/10.1007/s00222-024-01249-1