Back to Search
Start Over
Achieving high-capacity and durable sodium storage by constructing a binder-free nanotube array architecture of iron phosphide/carbon.
- Source :
-
Journal of Colloid & Interface Science . Jun2024, Vol. 664, p511-519. 9p. - Publication Year :
- 2024
-
Abstract
- [Display omitted] The conversion-type anode material of iron phosphide (FeP) promises enormous prospects for Na-ion battery technology due to its high theoretical capacity and cost-effectiveness. However, the poor reaction kinetics and large volume expansion of FeP significantly degrade the sodium storage, which remains a daunting challenge. Herein, we demonstrate a binder-free nanotube array architecture constructed by FeP@C hybrid on carbon cloth as advanced anodes to achieve fast and stable sodium storage. The nanotubular structure functions in multiple roles of providing short electron/ion transport distances, smooth electrolyte diffusion channels, and abundant active sites. The carbon layer could not only pave high-speed pathways for electron conductance but also cushion the volume change of FeP. Benefiting from these structural virtues, the FeP@C anode receives a high reversible capacity of 881.7 mAh/g at 0.1 A/g, along with a high initial Coulombic efficiency of 90% and excellent rate capability and cyclability in half and full cells. Moreover, the sodium energy reaction kinetics and mechanism of FeP@C are systematically studied. The present work offers a rational design and construction of high-capacity anode materials for high-energy–density Na-ion batteries. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219797
- Volume :
- 664
- Database :
- Academic Search Index
- Journal :
- Journal of Colloid & Interface Science
- Publication Type :
- Academic Journal
- Accession number :
- 176390991
- Full Text :
- https://doi.org/10.1016/j.jcis.2024.03.050