Back to Search Start Over

Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry.

Authors :
Wang, Qingshuang
Yang, Yanchen
Fu, Qiulin
Zhang, Zhongyue
Guo, Xiaodan
Wu, Taotao
Chai, Lu
Zhou, Yongheng
An, Yonghai
Source :
Minerals (2075-163X). Mar2024, Vol. 14 Issue 3, p310. 21p.
Publication Year :
2024

Abstract

The Wunugetu deposit, a large-scale porphyry copper–molybdenum deposit, is located in the southern Erguna block. Its ore bodies are primarily found within monzogranites, granite porphyries, and biotite monzogranites. Additionally, the deposit contains late-stage intrusive dykes of rhyolitic porphyries. This study examined the deposit's monzogranites and rhyolitic porphyries using lithogeochemistry, zircon U-Pb dating, and Hf isotopic analysis. The main findings include: (1) Zircon U-Pb dating showed that the monzogranites formed around 209.0 ± 1.0 Ma, whereas the rhyolitic porphyries in the northern portion formed around 170.49 ± 0.81 Ma, suggesting magmatic activity in the deposit spanned from the Late Triassic to the Middle Jurassic. (2) The monzogranites exhibited high silicon content (73.16–80.47 wt.%) and relatively low aluminum content (10.98–14.37 wt.%). They are enriched in alkalis (content: 3.42–10.10 wt.%) and deficient in magnesium and sodium, with aluminum saturation indices (A/CNK) ranging from 1.1 to 2.9. In addition, the monzogranites are enriched in large-ion lithophile elements (LILEs) such as Rb, K, and Ba and deficient in high-field-strength elements (HFSEs) like Nb, P, and Ti. (3) The monzogranites have low Zr + Nb + Ce + Y contents of (151.3–298.6 ppm) × 10−6 and 10,000 × Ga/Al ratios varying between 1.20 and 2.33, suggesting that they are characteristic of I-type granites. (4) Positive zircon εHf(t) values ranging from +0.3 to +7.6 in both rhyolitic porphyry and monzogranite samples, increasing with younger emplacement ages, imply that the deposit's rocks originated from magmatic mixing between mantle-derived mafic magmas and remelts of the juvenile crust. Considering these results and the regional geological evolution, this study proposes that the Wunugetu deposit was formed in an active continental margin setting and was influenced by the Late Triassic–Middle Jurassic southeastward subduction of the Mongol-Okhotsk Ocean. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
14
Issue :
3
Database :
Academic Search Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
176367713
Full Text :
https://doi.org/10.3390/min14030310