Back to Search Start Over

Geochemical Record of Late Quaternary Paleodepositional Environment from Lacustrine Sediments of Soda Lake, Carrizo Plain, California.

Authors :
Rodriguez, Alejandro
Guo, Junhua
O'Sullivan, Katie
Krugh, William
Source :
Minerals (2075-163X). Mar2024, Vol. 14 Issue 3, p211. 21p.
Publication Year :
2024

Abstract

This study investigates the responses of the depositional environments of Soda Lake sediments to climatic shifts from the Last Glacial Maximum to the Holocene epoch based on the results of major and trace elements of the North Soda Lake (NSL) NSL1A core. The NSL1A core records the sedimentary evolution of the Soda Lake watershed since at least 25 cal ka BP. Element analyses provide evidence that Soda Lake sediments are mostly derived from marine sequences in the Southern Coast Ranges of California. Variation in proxies for paleoweathering, paleoclimate, paleosalinity, paleoproductivity, paleoredox, and water depth is utilized to reconstruct the evolution of the sedimentary environment. The Chemical Index of Alteration (CIA) values indicate low to moderate chemical weathering in the sediment source regions. Paleoredox proxies indicate that the NSL1A core formed in a mainly subreduction environment. The NSL1A core is divided into four zones based on the results of the proxies. Zone 4 (5.0–5.8 m) of the sediment core indicates stable hydroclimatic conditions with low and constant sand and silt content, suggesting a warm and relatively humid environment. Zone 3 (3.35–5.0 m) represents the early half of the Last Glacial Maximum interval and a high lake stand. The elevated sand content suggests postflood events due to the northerly migration of westerly storm tracks. Zone 2 (1.075–3.35 m) reveals nuanced changes, including decreasing salinity, slight increases in wetness, detrital trace metals, and paleoproductivity. These subtle shifts suggest a multifaceted environmental evolution: a trend toward wetter conditions alongside a prolonged shift from cooler to warmer periods. Zone 1 (0.15–1.075 m) spans the Lateglacial to Holocene transition as well as Early and Middle Holocene, marked by significant hydrologic and ecologic variability including rapid warming during the Bølling–Allerød and rapid cooling linked to the Younger Dryas. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
14
Issue :
3
Database :
Academic Search Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
176367614
Full Text :
https://doi.org/10.3390/min14030211